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Abstract In this paper, we aim to investigate lattice-

valued information systems with fuzzy decision (LvISFD),

where the domain of every condition attribute is a finite

lattice. Firstly, we propose the concept of LvISFD by

combining dominance relation and lattice structure.

Meanwhile, we establish a rough set approach and give a

ranking method for all objects in this complex system.

Secondly, we address approximation reductions and rules

acquisition in LvISFD. Furthermore, an algorithm of the

presented reduction approach is constructed. Finally, an

illustrative example is given to show the effectiveness of

the proposed method, and experiment evaluation is per-

formed by four datasets from UCI. These results of this

study will be more valuable to solve practical issues.

Keywords Attribute reduction � Dominance relation �
Fuzzy set � Lattice-valued information system � Rough set

1 Introduction

Rough set theory was proposed by Pawlak in the early 1980s

[15, 16], which is based upon the classification mechanism.

From granular computing viewpoint, a classification can be

viewed as knowledge granules induced by a corresponding

equivalence relation. It is a new mathematical approach to

deal with uncertain and vague problems.And rough set theory

plays an important role in many fields, such as data mining,

knowledge discovery, and so on. Lower and upper approxi-

mations are two essential operators in rough set theory,

because any subset of the given universe can be approximated

by using these two operators. It is well-known that not all

conditional attributes are necessary to depict the decision

attribute in an information system. So, attribute reduction is

one of themost important problems in rough set theory. For an

information system with discrete attribute values, this can be

done by reducing redundant attributes and finding a subset of

the original attributes. However, an information system may

usually have more than one reduction. This means rules set

deriving fromattribute reduction is not unique. In practice, it is

always hoped to obtain the most concise rules set. Therefore,

people have been attempting to find the minimal reduction of

an information system, which means that the number of

attributes contained in the reduction is minimal. Unfortu-

nately, it has beenproven thatfinding theminimal reductionof

an information system is an NP-hard problem. However,

many types of attribute reduction have been proposed in the

area of rough sets [7, 12, 18, 20, 24]. Possible rules and pos-

sible reductions have been proposed as different ways to deal

with inconsistence in an inconsistent decision table [8].
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Approximation rules [21] are also used as an alternative

approach to possible rules. Uncertainty processing plays a key

role in learning rules discovery [28, 29]. It is found that, in a

knowledge information system, themodeling of fuzziness and

roughness can significantly improves the system performance

[27, 30, 31].

In real life, due to the existing of uncertainty and com-

plexity, some problems would not be perfectly solved by

original rough set theory. Therefore, it is vital to generalize

the classical rough set model. To overcome this limitation,

classical rough sets have been extended to several interesting

and meaningful models in recent years by proposing other

binary relations, such as tolerance relations [19], neighbor-

hood operators [35], and so on [9, 16, 17, 23, 25, 26, 32, 34–

36, 38, 39]. However, original rough set theory does not

consider attributes with preference ordered domain. We

often face some problems in which order of properties of the

considered attributes plays a crucial role. For this reason,

Greco, Matarazzo, and Slowinski [4–6] proposed an exten-

sion rough set theory, the dominance-based rough set

approach, to take into account the ordering properties of

criteria. This innovation is mainly based on substitution of

the indiscernibility relation by a dominance relation. In

dominance-based rough set approach condition attributes are

criteria, and classes are preference ordered [11]. The

approximated knowledge is a collection of upward and

downward unions of classes, and dominance classes are sets

of objects defined by using a dominance relation [3, 10]. In

recent years, several studies have been achieved about

properties and algorithmic implementations of dominance-

based rough set approach [1, 2, 22, 34, 35]. Nevertheless,

only a limited number of methods have been proposed by

using dominance-based rough set approach to acquire

knowledge from the inconsistent ordered information sys-

tems. Pioneering work on inconsistent ordered information

systems with the dominance-based rough set approach has

been proposed by Greco, Matarazzo, and Slowinski [4–6],

but they did not clearly point out the semantic explanation of

unknown values. Shao and Zhang [19] further proposed an

extension of the dominance relation in an inconsistent

ordered information systems.

The purpose of this paper is to address a complex infor-

mation system. We not only consider dominance relation of

condition attributes, but also take account into the lattice

structure of attribute values in an information system with

fuzzy decision. This system is called lattice-valued infor-

mation system (LvIS) with fuzzy decision in the study. By

discussing some important properties in an LvISFD, meth-

ods for attribute reductions and rules acquisition are con-

structed carefully. The rest of this paper is organized as

follows. Some preliminary concepts required in our work are

briefly recalled in Sect. 2. In Sect. 3, the definition of LvISFD

is proposed and some properties are discussed. In Sect. 4, a

rank approach with dominance classes is considered by

proposing dominance degree in an LvISFD. In Sect. 5,

approaches to approximation reduction are constructed in an

LvISFD, and dominance rules acquisition are also discussed

in this system. In Sect. 6, the algorithm analysis to attribute

reduction is developed in an LvISFD, and a small dataset

about the fund investment by persons and four real-life

datasets from the UCI are calculated by the C?? computer

program. Through the fund investment issue, it is illustrated

that how to make a decision by using the proposed approach.

Finally, we conclude the paper with a summary.

2 Preliminaries

In this section, we make a brief overview of some neces-

sary concepts and preliminaries required in the sequel of

our work. Detailed description of the theory can be found

in the source papers [3–6, 10].

Let U be a finite and non-empty set called the universe.

A fuzzy set X is a mapping from U into the interval [0, 1]:

lX : U 7!½0; 1�, where for each u 2 U we call the mem-

bership degree of u in X [37]. The fuzzy power set, i.e., the

set of all fuzzy sets in the universe U is denoted F(U).

An information system is a quadruple I ¼ ðU;AT ;V; f Þ,
where U is a non-empty finite set with n objects,

fu1; u2; . . .; ung, called the universe of discourse; AT ¼
fa1; a2; . . .; amg is a non-empty finite set with m attributes;

V ¼
S

a2AT Va and Va is the domain of attribute a; f :

U � AT �! V is an information function such that

f ðu; aÞ 2 Va for any u 2 U. An information system with

fuzzy decision is a special case of an information system

I ¼ ðU;AT [ fdg;V ; f Þ, where A is called conditional

attribute set, and d is a fuzzy decision of I . In an infor-

mation system, if the domain of an attribute is ordered

according to a decreasing or increasing preference, then the

attribute is a criteria.

Definition 2.1 [4–6] An information system is called an

ordered information system if all condition attributes are

criteria.

Assumed that the domain of the criteria a 2 AT is

completely pre-ordered by an outranking relation <a, then

u <a v means that u is at least as good as (outranks) v with

respect to a, and we say that u dominates v or v is

dominated by u. Being of type gain, that is, u <a v ()
f ðu; aÞ� f ðv; aÞ (according to increasing preference) or

u <a v () f ðu; aÞ� f ðv; aÞ (according to decreasing

preference). Without any loss of generality, we only

consider attributes with increasing preference [3, 10].

Definition 2.2 Let Id ¼ ðU;AT
S
fdg;V ; f Þ be an infor-

mation system with fuzzy decision and A � AT . Given
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R<

A ¼ fðu; vÞ j f ðu; aÞ� f ðv; aÞ 8u; v 2 U; a 2 AÞg: ð1Þ

then R<

A is called the dominance relation with respect to

condition attributes set A, and in which case the information

system Id ¼ ðU;AT
S
fdg;V; f Þ is called an ordered infor-

mation system with fuzzy decision and denoted by

I<

d ¼ ðU;AT
S
fdg;V; f Þ, orI<

d for simplicity. Let us denote

½ui�<A ¼ fuj j f ðuj; aÞ� f ðui; aÞ; 8a 2 Ag;
U=R<

A ¼ f½u1�<A ; ½u2�
<

A ; . . .; ½un�
<

A g;

where i 2 f1; 2; . . .; ng, then ½ui�<A will be called the dom-

inance class of ui 2 U and U=R<

A be cover of U with

respect to condition attributes set A, respectively.

Proposition 2.1 [4–6] Let I<

d ¼ ðU;AT
S
fdg;V; f Þ be

an ordered information system with fuzzy decision and

B;A � AT , then we have that

1. R<

AT is reflective, transitive, but not symmetric, so it is

not an equivalence relation;

2. If B � A � AT , then R<

AT � R<

A � R<

B .

Similarly, for the dominance class induced by dominance

relation R<

A , the following properties are still true.

Proposition 2.2 [4–6] Let I<

d ¼ ðU;AT
S
fdg;V ; f Þ be

an ordered information system with fuzzy decision and

B;A � AT, then we have that

1. If B � A � AT, then ½u�<AT � ½u�<A � ½u�<B for any

u 2 U;

2. If v 2 ½u�<A , then ½v�<A � ½u�<A and ½u�<A ¼
S
f½v�<A j v 2 ½u�<A g;

3. ½u�<AT ¼ ½v�<AT if and only if f ðu; aÞ ¼ f ðv; aÞ for any

a 2 AT ;

4. j½u�<AT j � 1 for any u 2 U,

where |X| denotes the cardinality of the set X.

For any subset X � U and A � AT in I<, if we denote

R<

A ðXÞ ¼ fui j ½ui�<A � X; ui 2 Ug; ð2Þ

R<

A ðXÞ ¼ fui j ½ui�<A \ X 6¼ ;; ui 2 Ug; ð3Þ

then R<

A ðXÞ and R<

A ðXÞ are the lower and upper approxi-

mation of X with respect to R<

A , respectively.

3 Lattice-valued information system with fuzzy
decision (LvISFD)

In this section, we first propose the concept of lattice-val-

ued information system with fuzzy decision (LvISFD),

which is an extension of lattice-valued information system

[13, 14, 33] . Moreover, lower/upper approximations and

some important properties are considered in lattice-valued

information system with fuzzy decision.

Definition 3.1 An LvISFD is an information system

Ld ¼ ðU;AT
S
fdg;V ; f Þ, where

1. U ¼ fu1; u2; . . .; ung is a non-empty finite set with

n objects, called the universe of discourse;

2. AT ¼ fa1; a2; . . .; amg is a non-empty finite set with

m condition attributes and fdg is the decision attributes
set;

3. V ¼
S

a2AT
Va and Va is the domain of attribute a such

that ðVa;<aÞ is a finite lattice;

4. d ¼ fðu; dðuÞÞ j u 2 U; dðuÞ 2 I ð½0; 1�Þg is fuzzy

decision attribute. The decision can be divided into

many classes as follows

Di ¼ fujai � f ðxÞ� aiþ1; ai 2 ½0; 1�g;

5. f : U � AT �! V is an information function such that

for any u 2 U, f ðu; aÞ 2 Va when a 2 AT .

From above definition, we can find that the domain of

every condition attribute can be ordered according to a

decreasing or increasing preference, that is, every attribute

is a criteria. Thus, LvISFD is a kind of ordered information

system. In general, it can be denoted by

L<

d ¼ ðU;AT
S
fdg;V ; f Þ, or L<

d for simplicity.

In the following, just like the description of dominance

relation in Sect. 2, the dominance relation in lattice-valued

information systems with fuzzy decision can de redefined

as follows.

Definition 3.2 Let L<

d ¼ ðU;AT
S
fdg;V; f Þ be an

LvISFD and A � AT . Given

R<

A ¼ fðu; vÞ j f ðu; aÞ<af ðv; aÞ; 8a 2 Ag ð4Þ

then R<

A is called the dominance relations with respect to

A.

Let us denote

½ui�<A ¼ fuj j f ðuj; aÞ<af ðui; aÞ; 8a 2 Ag;
U=R<

A ¼ f½u1�<A ; ½u2�
<

A ; . . .; ½un�
<

A g;

where i 2 f1; 2; . . .; ng, then ½ui�<A will be called a domi-

nance class and U=R<

A be a cover of U with respect to A in

LvISFD. We use R<

a instead of R<

fag and ½ui�<a instead of

½ui�<fag for any a 2 AT .

Example 3.1 Consider an lattice-valued information sys-

tem with fuzzy decision in Table 1, where U ¼
fu1; u2; . . .; u6g and AT ¼ fa1; a2; a3; a4; a5g.

According to above expression, we can find Va1 ¼
f1; 2; 3g is a finite lattice with real numbers, where the
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partial order relation on Va1 is ‘‘� ’’ between two real

numbers. So a dominance relation on U according to

attribute a1 can be defined as

R<

a1
¼ fðu; vÞ j f ðu; a1Þ� f ðv; a1Þg:

The domain Va2 ¼ f0:6; 0:7g is a finite lattice with fuzzy

elements where the partial order relation on Va2 is ‘‘� ’’

between two fuzzy elements. And a dominance relation on

U according to attribute a2 can be defined as

R<

a2
¼ fðu; vÞ j f ðu; a2Þ� f ðv; a2Þg:

The domain Va3 ¼ f½0:1; 0:5�; ½0:3; 0:8�; ½0:2; 0:6�; ½0:4;
0:9�g is a finite lattice with interval-valued elements, and a

dominance relation on it can be defined as

R<

a3
¼ fðu; vÞ j f	ðu; a3Þ� f	ðv; a3Þg;

where f	ðu; a3Þ� f	ðv; a3Þ if and only if fþðu; a3Þ�
fþðv; a3Þ and f�ðu; a3Þ� f�ðv; a3Þ, fþðu; a3Þ is the right

endpoint of f ðu; a3Þ and f�ðu; a3Þ is the left endpoint of

f ðu; a3Þ, to name a couple for explanation.

The domain Va4 ¼ ff0g; f0; 1g; f0; 1; 2gg is a finite

lattice with set-valued elements, where the partial order

relation on Va4 is ‘‘
’’ between two sets. Thus a dominance

relation on U according to attribute a4 can be defined as

R<

a4
¼ fðu; vÞ j f ðu; a4Þ 
 f ðv; a4Þg:

The domain Va5 ¼ fð0; 1Þ; ð0:3; 0:6Þ; ð0:5; 0:3Þ; ð0:8; 0:1Þg
is a finite lattice, every element of which is a classical

intuitionistic fuzzy set. Thus a dominance relation on

U according to attribute a5 can be defined as

R<

a5
¼ fðu; vÞ j la5ðuÞ� la5ðvÞ and ma5ðuÞ� ma5ðvÞg:

The decision d ¼ f0:9; 0:2; 0:7; 1; 0:2; 0:3g is a fuzzy set. If
the membership degree dðuiÞ� 0:7, then the decision is

called high decision. Otherwise, it is called lower decision.

So, the decision can be divided into two decision classes

‘‘High’’ and ‘‘low’’, where D ¼ fHigh;Lowg ¼
ffu1; u3; u4g; fu2; u5; u6gg. We can also get the dominance

relation classes as following:

½u1�<AT ¼ fu1g; ½u2�<AT ¼ fu2g; ½u3�<AT ¼ fu1; u3g;
½u4�<AT ¼ fu4g; ½u5�<AT ¼ fu5g; ½u6�<AT ¼ fu1; u5; u6g:

Definition 3.3 Let L<

d ¼ ðU;AT
S
fdg;V; f Þ be an

LvISFD, and B;A � AT .

1. If ½u�<B ¼ ½u�<A for all u 2 U, then we have that cover

U=R<

B is equal to U=R<

A , denoted by U=R<

B ¼ U=R<

A .

2. If ½u�<B � ½u�<A for all u 2 U, then we have that cover

U=R<

B is finer than U=R<

A , denoted by

U=R<

B � U=R<

A .

3. If ½u�<B � ½u�<A for all u 2 U and ½v�<B 6¼ ½v�<A for some

v 2 U, then we have that cover U=R<

B is proper finer

than U=R<

A , denoted by U=R<

B � U=R<

A .

From the definition of R<

A and ½u�<A , the following prop-

erties can be obtained directly.

Proposition 3.1 Let L<

d ¼ ðU;AT
S
fdg;V ; f Þ be an

LvISFD, and B;A � AT, then we can get

1. R<

A ¼
T

a2A
R<

a ;

2. R<

A is reflective, transitive, but not symmetric, so it is

not an equivalence relation;

3. If B � A � AT, then R<

AT � R<

A � R<

B .

Proposition 3.2 Let L<

d ¼ ðU;AT
S
fdg;V; f Þ be an

LvISFD, and B;A � AT , then we have that

1. If B � A � AT, then ½u�<AT � ½u�<A � ½u�<B for all

u 2 U.

2. If u 2 ½v�<A , then ½u�<A � ½v�<A and ½v�<A ¼
S
f½u�<A j

u 2 ½v�<A g.
3. ½u�<AT ¼ ½v�<AT if and only if f ðu; aÞ ¼ f ðv; aÞ for all

a 2 AT .

4. j½u�<AT j � 1 for all u 2 U.

In the following, we will investigate the problem of

approximation operators with respect to R<

A in lattice-

valued information systems with fuzzy decision.

Definition 3.4 Let L<

d ¼ ðU;AT
S
fdg;V; f Þ be an

LvISFD and A � AT . The lower and upper approximation

operators of fdg with respect to A is denoted by A<

d and

A<

d , respectively. And their membership functions are

defined by

A<

d ðuÞ ¼
^

ff ðv; dÞ j v 2 ½u�<A g; ð5Þ

A<

d ðuÞ ¼
_

ff ðv; dÞ j v 2 ½u�<A g: ð6Þ

From above definition, one can easily obtain the following

results.

Table 1 A LvISFD

U a1 a2 a3 a4 a5 d

u1 2 0.6 [0.3, 0.8] f0; 1; 2g (0.8, 0.1) 0.9

u2 3 0.7 [0.1, 0.5] f0; 1; 2g (0.0, 1.0) 0.2

u3 2 0.6 [0.3, 0.8] f0g (0.5, 0.3) 0.7

u4 2 0.7 [0.3, 0.8] f0g (0.3, 0.6) 1

u5 1 0.6 [0.4, 0.9] f0; 1; 2g (0.5, 0.3) 0.2

u6 1 0.6 [0.2, 0.6] f0; 1g (0.3, 0.6) 0.3
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Proposition 3.3 Let L<

d ¼ ðU;AT
S
fdg;V ; f Þ be an

LvISFD, and B;A � AT, then we have that

1. If B � A, then B<

d � A<

d and A<

d � B<

d .

2. If R<

A ¼ R<

B , then B<

d ¼ A<

d and A<

d ¼ B<

d .

These properties can be illustrated through the following

example.

Example 3.2 (Continued from Example 3.1) Suppose

A ¼ fa1; a2; a3g, we can obtain

½u1�<A ¼ fu1; u3; u4g;
½u2�<A ¼ fu2g;
½u3�<A ¼ fu1; u3; u4g;
½u4�<A ¼ fu4g;
½u5�<A ¼ fu5g;
½u6�<A ¼ fu1; u3; u4; u5; u6g:

Obviously, U=R<

A is a covering of U and U=R<

C � U=R<

A .

Moreover, one can obtain that

A<

d ¼ 0:7

u1
þ 0:2

u2
þ 0:7

u3
þ 1

u4
þ 0:2

u5
þ 0:2

u6
;

A<

d ¼ 1

u1
þ 0:2

u2
þ 1

u3
þ 1

u4
þ 0:2

u5
þ 1

u6
;

and

AT<

d ¼ 0:9

u1
þ 0:2

u2
þ 0:7

u3
þ 1

u4
þ 0:2

u5
þ 0:2

u6
;

AT<

d ¼ 0:9

u1
þ 0:2

u2
þ 0:9

u3
þ 1

u4
þ 0:2

u5
þ 0:9

u6
:

Thus, we have that A<

d � C<

d and C<

d � A<

d .

4 Ranking for objects in LvISFD

In general, there are two classes of problems in intelligent

decision-making. One is to find satisfactory results through

ranking with information aggregation. And the other is to

find dominance rules through relations. In this section, we

mainly investigate that how to rank all objects by the

dominance relation in lattice-valued information systems.

Definition 4.1 Let L<

d ¼ ðU;AT
S
fdg;V; f Þ be an

LvISFD, and A � AT . Dominance degree between two

objects ui; uj 2 U with respect to the dominance relation

R�
A is defined as

dAðui; ujÞ ¼ 1� j½ui�<A \ ð
 ½uj�<A Þj
jUj : ð7Þ

We say that dominance degree of ui to uj is dAðui; ujÞ.

From the definition, the dominance degree dAðui; ujÞ
depicts the proportion of some objects which are as least as

good as uj in dominance class ½ui�<A . Moreover, we can

obtain the following properties.

Proposition 4.1 Let L<

d ¼ ðU;AT
S
fdg;V; f Þ be an

LvISFD, A � AT and dominance degree between two

objects uj and ui be dAðui; ujÞ with respect to the dominance
relation R<

A , then the following hold.

1. 0� dAðui; ujÞ� 1 and dAðui; uiÞ ¼ 1.

2. If ui 2 ½uj�<A , then dAðui; ujÞ ¼ 1:

3. If uj 2 ½uk�<A , then dAðui; ujÞ� dAðui; ukÞ.
4. If uj 2 ½uk�<A and uk 2 ½ui�<A dAðui; ujÞ� dAðuk; ujÞ and

dAðui; ujÞ� dAðui; ukÞ.

Proof

1. is directly obtained from the definition.

2. Since ui 2 ½uj�<A , one can have ½ui�<A � ½uj�<A by Propo-

sition 3.2. So, we have ½ui�<A \ ð
 ½uj�<A Þ ¼ ;. That is to
say

dAðui; ujÞ ¼ 1� j½ui�<A \ ð
 ½uj�<A Þj
jUj ¼ 1:

3. If uj 2 ½uk�<A , then we can obtain ½uj�<A � ½uk�<A . So we

have ð
 ½uj�<A Þ 
 ð
 ½uk�<A Þ. Thus

j½ui�<A \ ð
 ½uj�<A Þj
jUj � j½ui�<A \ ð
 ½uk�<A Þj

jUj :

Then we can get dAðui; ujÞ� dAðui; ukÞ:
4. If uj 2 ½uk�<A and uk 2 ½ui�<A , then we can obtain

½uj�<A � ½uk�<A � ½ui�<A . That is ð
 ½uj�<A Þ 
 ð
 ½uk�<A Þ 

ð
 ½ui�<A Þ hold. So we have

j½ui�<A \ ð
 ½uj�<A Þj
jUj � j½uk�<A \ ð
 ½uj�<A Þj

jUj ;

and

j½ui�<A \ ð
 ½uj�<A Þj
jUj � j½ui�<A \ ð
 ½uk�<A Þj

jUj :

Then we can get dAðui; ujÞ� dAðuk; ujÞ; dAðui;
ujÞ� dAðui; ukÞ: h

Definition 4.2 Let L<

d ¼ ðU;AT
S
fdg;V; f Þ be an

LvISFD, and A � AT . Denote

M<

A ¼ ðrijÞjUj�jUj; where rij ¼ dAðui; ujÞ: ð8Þ

Then, we call the matrixM<

A to be a dominance matrix with

respect to A induced by the intuitionistic fuzzy dominance

relation R<

A . Moreover, if denote
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dAðuiÞ ¼
1

jUj
X

uj2U
dAðui; ujÞ; ð9Þ

then we call dAðuiÞ to be dominance degree of ui with

respect to relation R<

A , for every ui 2 U.

By definition of dominance matrix and dominance

degree of the object with respect to relation R<

A , we can

directly receive the following properties. For all ui 2 U, the

degree can be calculated according to the following

formula

dAðuiÞ ¼
1

jUj
XjUj

j¼1

rij: ð10Þ

As a result of the above discussions, we come to the fol-

lowing corollary.

Corollary 4.1 Let L<

d ¼ ðU;AT
S
fdg;V; f Þ be an

LvISFD, and A � AT. If R<

A ¼ R<

AT , then

dAðui; ujÞ ¼ dATðui; ujÞ, dAðuiÞ ¼ dATðuiÞ and M<

A ¼ M<

AT ,

for ui; uj 2 U:

From the dominance degree of each object on the

universe, we can rank all objects according to the number

of dA. A larger number implies a better object. This idea

can be understood by the following example.

Example 4.1 (Continued From Example 3.1) Rank all

objects in U according to the dominance relation R<

AT in the

system of Example 3.1. By Example 3.1, we can easily

obtain the dominance degree of two objects and dominance

matrix in the system as follows:

M<

AT ¼

1 5=6 1 5=6 5=6 1

5=6 1 5=6 5=6 5=6 5=6

5=6 4=6 1 4=6 4=6 5=6

5=6 5=6 5=6 1 5=6 5=6

5=6 5=6 5=6 5=6 1 1

4=6 3=6 4=6 3=6 4=6 1

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

:

So, we can have

dATðu1Þ ¼ 0:92; dATðu2Þ ¼ 0:86; dATðu3Þ ¼ 0:78;

dATðu4Þ ¼ 0:86; dATðu5Þ ¼ 0:89; dATðu6Þ ¼ 0:67:

Therefore, we rank all objects in the following:

u1 � u5 � u2 ¼ u4 � u3 � u6:

5 Approximation reductions and rules acquisition
in an LvISFD

The approximation reduction is an important attribute

reduction, which can be used to simplify an inconsistent

classical decision table, and extract more briefer rules.

However, there is not any practical approach to attribute

reduction in lattice-valued information systems with fuzzy

decision. In this section, we present the notions of lower

approximation reduction and upper approximation reduc-

tions in lattice-valued information systems with fuzzy

decision, and then we develop the method based on dis-

cernibility matrix to compute all approximation approxi-

mation reductions. Moreover, we investigate rules

acquisition of lattice-valued information systems with

fuzzy decision.

Definition 5.1 Let L<

d ¼ ðU;AT
S
fdg;V; f Þ be an

LvISFD, and A � AT .

1. If A<

d ¼ AT<

d , then A is referred to as an upper

approximation consistent set of L<

d . Moreover, if A is

an upper approximation consistent set and B<

d 6¼ AT<

d

for any B � A, then A is referred to as an upper

approximation reduction of L<

d .

2. If A<

d ¼ AT<

d , then A is referred to as a lower

approximation consistent set of L<

d . Moreover, if A is

a lower approximation consistent set and B<

d 6¼ AT<

d

for any B � A, then A is referred to as a lower

approximation reduction of L<

d .

Proposition 5.1 Let L<

d ¼ ðU;AT
S
fdg;V; f Þ be an

LvISFD, and A � AT. Then A is an upper approximation

consistent set if and only if there exists ak 2 A such that

f ðu; akÞ 6 � f ðv; akÞ when AT<

d ðuÞ\AT<

d ðvÞ for u; v 2 U.

Proof ‘‘¼)’’: Suppose f ðu; akÞ� f ðv; akÞ for any ak 2 A

when AT<

d ðvÞ\AT<

d ðuÞ, then we have that v 2 ½u�<A .
According to the Proposition 3.2, one can get that

½v�<A � ½u�<A . By Definition 3.4, A<

d ðvÞ�A<

d ðuÞ is true. With

the condition that A is an upper approximation consistent

set, we have that A<

d ðuÞ ¼ AT<

d ðuÞ and A<

d ðvÞ ¼ AT<

d ðvÞ.
That is, AT<

d ðuÞ�AT<

d ðvÞ, which is a contradiction with

AT<

d ðuÞ\AT<

d ðvÞ. Therefore, there exists ak 2 A s.t.

f ðu; akÞ 6 � f ðv; akÞ when AT<

d ðuÞ\AT<

d ðvÞ for any

u; v 2 U.

‘‘(¼’’: Suppose A is not an upper approximation

consistent set, that is, A<

d 6¼ AT<

d . Thus, there exists u0 2
U s.t. A<

d ðu0Þ 6¼ AT<

d ðu0Þ. By Definition 3.4 and Proposi-

tion 3.3, we have that A<

d ðu0Þ[AT<

d ðu0Þ. Moreover, let

v0 2 ½u0�<A s.t. A<

d ðu0Þ ¼ f ðv0; dÞ. And we have that

v0 2 ½v0�<C , so one can obtain that maxff ðu; dÞ j
u 2 ½v0�<Cg� f ðv0; dÞ. Hence, AT<

d ðv0Þ[AT<

d ðu0Þ. So,

there exists ak 2 A s.t. f ðu0; akÞ 6 � f ðv0; akÞ, that is,

v0 62 ½u0�<A . And this is a contradiction with v0 2 ½u0�<A . h
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Proposition 5.2 Let L<

d ¼ ðU;AT
S
fdg;V; f Þ be an

LvISFD, and A � AT . Then A is a lower approximation

consistent set if and only if there exists ak 2 A s.t. f ðu; akÞ 6
� f ðv; akÞ when AT<

d ðuÞ\AT<

d ðvÞ for any u; v 2 U.

Proof It is similar to the proof of Proposition 5.1. h

From above, one can get that Propositions 5.1 and 5.2

are just an equivalent description of the upper and lower

approximation consistent sets respectively. To realize the

purpose of obtaining the approximation reduction in an

LvISFD, the notion of discernibility matrix will be pro-

posed and, then, the detailed methods for researching upper

and lower approximation reductions are constructed.

Let us take

Dþ
f ¼ fðu; vÞ j AT<

d ðuÞ\AT<

d ðvÞ; u; v 2 Ug; ð11Þ

D�
f ¼ fðu; vÞ j AT<

d ðuÞ\AT<

d ðvÞ; u; v 2 Ug; ð12Þ

and then the notion of discernibility matrix can be defined

as follows.

Definition 5.2 Let L<

d ¼ ðU;AT
S
fdg;V; f Þ be an

LvISFD. For any u; v 2 U, if we denote

Dþ
f ðu; vÞ ¼

fa j f ðu; aÞ 6 � f ðv; aÞ; a 2 ATg ðu; vÞ 2 Dþ
f

; ðu; vÞ 62 Dþ
f

(

ð13Þ

and

D�
f ðu; vÞ ¼

fa j f ðu; aÞ 6 � f ðv; aÞ; a 2 ATg ðu; vÞ 2 D�
f

; ðu; vÞ 62 D�
f

(

;

ð14Þ

then we call Dþ
f ðu; vÞ an upper approximation discerni-

bility attributes set and D�
f ðu; vÞ a lower approximation

discernibility attributes set between u and v, respectively.

The matrix Mþ ¼ ðDþ
f ðu; vÞÞjUj�jUj and M� ¼

ðD�
f ðu; vÞÞjUj�jUj are called upper approximation discerni-

bility matrix and lower approximation discernibility

matrix, respectively.

Proposition 5.3 Let L<

d ¼ ðU;AT
S
fdg;V; f Þ be an

LvISFD, and A � AT .

1. A is an upper approximation consistent set if and only

if A
T
Dþ

f ðu; vÞ 6¼ ; for all ðu; vÞ 2 Dþ
f .

2. A is a lower approximation consistent set if and only if

A
T
D�

f ðu; vÞ 6¼ ; for all ðu; vÞ 2 D�
f .

Proof

1. ‘‘¼)’’: By Proposition 5.1 we have that there exists

a 2 A s.t. f ðu; aÞ 6 � f ðv; aÞ for any ðu; vÞ 2 Dþ
f . It is

easy to obtain that a 2 Dþ
f ðu; vÞ. Therefore, we have

that A
T
Dþ

f ðu; vÞ 6¼ ;. ‘‘(¼’’: If A
T
Dþ

f ðu; vÞ 6¼ ; for

all ðu; vÞ 2 Dþ
f , then there exists a 2 A

T
Dþ

f ðu; vÞ, i.e.,
a 2 Dþ

f ðu; vÞ. With the definition of Dþ
f ðu; vÞ, we have

that f ðu; aÞ 6 � f ðv; aÞ. According to Proposition 5.1,

one can get that A is an upper approximation consistent

set.

2. The proof of (2) is similar to (1).

Definition 5.3 Let L<

d ¼ ðU;AT
S
fdg;V; f Þ be an

LvISFD. If we denote

Fþ ¼
n̂

i;j¼1

_
Dþ

f ðui; ujÞ
� �

ð15Þ

F� ¼
n̂

i;j¼1

_
D�

f ðui; ujÞ
� �

; ð16Þ

then Fþ is referred to as an upper approximation dis-

cernibility formula and F� is referred to as a lower

approximation discernibility formula.

Moreover, if Fþ and F� can be expressed as

Fþ ¼
_p

k¼1

q̂k

l¼1

ail

 !

¼
_p

k¼1

Bk ð17Þ

F� ¼
_t

k¼1

ŝk

l¼1

ajl

 !

¼
_t

k¼1

Ak; ð18Þ

then Fþ is referred to as an upper approximation minimal

disjunctive normal form of the discernibility formula and

F� is referred to as a lower approximation minimal dis-

junctive normal form if jBkj ¼ ak and jAkj ¼ sk.

Proposition 5.4 Let L<

d ¼ ðU;AT
S
fdg;V; f Þ be an

LvISFD. Then we have that

1. Bk is an upper approximation reduction and Fþ ¼
Wp

k¼1Bk contains all upper approximation reductions.

2. Ak is a lower approximation reduction and F� ¼
Wp

k¼1Ak contains all lower approximation reductions.

Proof The proof is easy by Definition 5.1. h

Example 5.1 (Continued from Examples 3.1 and 3.2) By

computing we can get Mþ as follows (Table 2)

According to Definition 5.1, one can get that

Fþ ¼ ða1 _ a2 _ a4Þ ^ ða1 _ a2Þ ^ ða4 _ a5Þ ^ ða1 _ a4Þ
^ ða3 _ a4Þ ^ ða3Þ ^ ða4Þ ^ ða5Þ

¼ ða1 _ a2Þ ^ ða3Þ ^ ða4Þ ^ ða5Þ
¼ ða1 ^ a3 ^ a4 ^ a5Þ _ ða2 ^ a3 ^ a4 ^ a5Þ
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Similarly, one can get that M� as follows (Table 3)

And by Definition 5.1, we have that

F� ¼ ða1 _ a3 _ a4 _ a5Þ ^ ða1 _ a2 _ a3Þ
^ ða1 _ a3 _ a5Þ ^ ða1 _ a2Þ ^ ða1 _ a5Þ
^ ða3 _ a5Þ ^ ða4 _ a5Þ ^ ða1Þ ^ ða2Þ

¼ ða3 _ a5Þ ^ ða4 _ a5Þ ^ ða1Þ ^ ða2Þ
¼ ða1 ^ a2 ^ a3 ^ a4Þ _ ða1 ^ a2 ^ a5Þ:

So, fa2; a3g is the only one lower approximation reduction

of this system.

Thus, we can conclude that fa1; a3; a4; a5g and

fa2; a3; a4; a5g are all the upper approximation reductions,

and fa1; a2; a3; a4g and fa1; a2; a5g are all the lower

approximation reductions of LvISFD, which accord with

the result of Example 3.1.

In an ordered information system, an atomic expression

over a single attribute a is defined as ða; �Þ in an ordered

information system. For any A � AT , an expression over

A in ordered information systems is defined by
V

a2A
eðaÞ,

where e(a) is an atomic expression over a. Given a 2 AT ,

v1 2 Va, an atomic formula over a single attribute a is

defined as ða; �Þ. For any A 2 AT , a formula over A in

ordered information system is denoted by M(A). Let the

formulas / 2 MðAÞ, jj/jj denotes the set of objects satis-

fying formula /. For example, ða; � ; v1Þ, is atomic for-

mula, then

jjða; � ; v1Þjj ¼ fu 2 Ujf ðx; aÞ� v1g: ð19Þ

However, in an LvISFD, we modify the definition of a

formula over a according to the dominance relation R<

A as

follows

jjða;<; v1Þjj ¼ fu 2 Ujf ðx; aÞ<v1g: ð20Þ

Now we consider an LvISFD I < ¼ ðU;AT [ fdg;V; f Þ
and a subset of attributes A � AT . For formulas / 2 MðAÞ,
a decision rule, denoted by / ! u, is read ‘‘if / then u.’’
The formula / is called the rule’s antecedent, and the

formula u is called the rules consequent. We say that an

object supports a decision rule if it matches both the con-

dition and the decision parts of the rule. On the other hand,

an object is covered by a decision rule if it matches the

condition parts of the rule.

In order to obtain more meaningful rules, the lower

approximation A<

d and upper approximation A<

d also can be

divided into many classes as follows

ðA<

d Þi ¼ fuj ai � A<

d ðuÞ� aiþ1; ai 2 ½0; 1�g; ð21Þ

ðA<

d Þi ¼ fuj ai � A<

d ðuÞ� aiþ1; ai 2 ½0; 1�g: ð22Þ

There are two types of dominance rules to be considered as

follows.

1. Certain dominance rules with the following syntax: if

ðf ðu; a1Þ<va1Þ ^ ðf ðu; a2Þ<va2Þ ^ � � � ^ ðf ðu; akÞ<vakÞ,
then u 2 Di, the syntax is equivalent to ‘‘If u 2 ðA<

d Þi,
then u 2 Di’’;

2. Possible dominance rules with the following syntax: if

ðf ðu; a1Þ<va1Þ ^ ðf ðx; a2Þ<va2Þ ^ � � � ^ ðf ðu; akÞ<vakÞ,
then u possible belong to Di, the syntax is equivalent to

‘‘If u 2 ðA<

d Þi, then u possible belong to Di’’.

Now we employ an example to illustrate dominance rules

acquisition of lattice-valued ordered information system

with fuzzy decision.

Example 5.2 (Continued from Examples 3.1 and 5.1)

Consider an LvISFD in Table 1, we can easy obtain that

ðA<

d Þ1 ¼ fxj A<

d ðuÞ� 0:7g ¼ fu1; u3; u4g;

ðA<

d Þ1 ¼ fxj A<

d ðuÞ� 0:7g ¼ fu1; u3; u4; u6g:

So, the following set of dominance rules from the Table 1

are:

1. Certain dominance rules with the following syntax: r1 :

ða1<2Þ ^ ða2<0:6Þ ^ ða3<½0:3; 0:8�Þ ^ ða4<0Þ ^ ða5<
ð0:5; 0:3ÞÞ ! ðd ¼ High) supported by objects u1; u3;

r2 : ða1<2Þ ^ ða2<0:7Þ ^ ða3<½0:3; 0:8�Þ^ ða4<0Þ ^
ða5<ð0:3; 0:6ÞÞ ! ðd ¼ High) supported by objects

u4.

2. Possible dominance rules with the following syntax:

r3 : ða1<1Þ ^ ða2<0:6Þ ^ ða3<½0:2; 0:4�Þ ^ ða4<f0;

Table 2 Upper approximation discernibility matrix of Table 1

ui=uj u1 u2 u3 u4 u5 u6

u1 ; ; ; fa4a5g ; ;
u2 fa1a2g ; fa1a2a4g a1a4 ; fa1a2a4g
u3 ; ; ; fa5g ; ;
u4 ; ; ; ; ; ;
u5 fa3g ; fa3a4g fa3a4a5g ; fa3a4a5g
u6 ; ; ; fa4g ; ;

Table 3 Lower approximation discernibility matrix of Table 1

ui=uj u1 u2 u3 u4 u5 u6

u1 ; ; ; fa2g ; ;
u2 fa3a5g ; fa3a5g a3a5 ; ;
u3 fa4a5g ; ; fa2g ; ;
u4 ; ; ; ; ; ;
u5 fa1a5g ; fa1g fa1a2g ; ;
u6 fa1a3a4a5g ; fa1a3a5g fa1a2a3g ; ;
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1gÞ ^ða5<ð0:3; 0:6ÞÞ ! ðd ¼ High) _ ðd ¼ Low)

supported by objects u6; Where r1; r2 are certain

dominance rules, r3 is possible dominance rules.

According to Example 5.1, we know the attribute

a3; a4; a5 are indispensable to extract certain domi-

nance rules, and the attribute a1; a2 are indispensable to

extract possible dominance rules. Through a upper and

lower approximation reduction, one can obtain more

briefer dominance rules. For example, by taking the

upper approximation reduction fa1; a3; a4; a5g and

lower approximation reduction fa1; a2; a5g.The three

dominance rules in Example 5.2 can be simply

represented as follows.

3. Certain dominance rules with the following syntax: r1 :

ða1<2Þ ^ ða2<0:6Þ ^ ða5<ð0:5; 0:3ÞÞ ! (d ¼ High)

supported by objects u1; u3; r2 : ða1<2Þ ^ ða2<0:7Þ ^
ða5<ð0:3; 0:6ÞÞ ! (d ¼ High) supported by objects u4.

4. Possible dominance rules with the following syntax:

r3 : ða1<1Þ ^ ða3<½0:2; 0:4�Þ ^ ða4<f0; 1gÞ ^ ða5<
ð0:3; 0:6ÞÞ ! (d ¼ High) _ ðd ¼ Low) supported by

u6;

where r1; r2 are certain dominance rules, r3 is possible

dominance rule.

6 Case study and experiments

In this section, we present the algorithm of the attribute

reduction in an LvISFD (see Algorithm 1) and a small arti-

ficial case study (see Table 4), then give experimental eval-

uation by four datasets from the UCI dataset. Firstly, we

construct an lattice-valued dataset with fuzzy decision about

the fund investment by persons. Fund has become an

increasingly important source of financing. For a decision

maker, he may need to adopt a better one from some possible

fund projects or find some directions from existing successful

fund projects before investing. The purpose of this section is,

through a fund investment issue, to illustrate how to make a

decision by using the approaches proposed in this paper.

We consider ten projects ui ði ¼ 1; 2; . . .; 10Þ. They can

be evaluated from the view of profit factors. Profit factors

are classified into five factors, which are market, technol-

ogy, management, environment and production. These five

factors are all increasing preference and the value of each

project under each factor is given by an evaluation expert

through an intuitionistic number. Table 4 is an evaluation

table about fund investment given by an expert, where

U ¼ fu1; u2; u3; u4; u5; u6; u7; u8; u9; u10g, AT ¼ fMarket,

Technology, Management, Environment, Productiong and

d ¼ fVentureg, For convenience, in the sequel,

a1; a2; a3; a4; a5 and Pf will stand for Market, Technology,

Management, Environment, Production, and Profit,

respectively.

From Table 4, we have that U=R<

AT ¼ f½u1�<AT ;
½u2�<AT ; ½u3�

<

AT ; ½u4�<AT ; ½u5�
<

AT ; ½u6�
<

AT ; ½u7�<AT ; ½u8�
<

AT ; ½u9�
<

AT ;

½u10�<ATg: And the dominance classes are

½u1�<AT ¼ fu1; u5; u7; u8g; ½u2�<AT ¼ fu1; u2; u3; u5; u6; u7;
u8; u9; u10g;

½u3�<AT ¼ fu1; u3; u5; u6; u7; u8g; ½u4�<AT ¼ fu1; u2; u3; u4;

u5; u6; u7; u8; u9; u10g; ½u5�<AT ¼ fu5g;
½u6�<AT ¼ fu5; u6; u8g; ½u7�<AT ¼ fu5; u7; u8g; ½u8�<AT ¼

fu8g; ½u9�<AT ¼ fu9g; ½u10�<AT ¼ fu10g:
From the definition of dominance degree, we can get the

dominance matrix of this system with respect to U=R<

AT as

M<

AT ¼

1 1 1 1 0:7 0:8 0:9 0:7 0:6 0:6

0:5 1 0:7 1 0:2 0:4 0:4 0:2 0:2 0:2

0:8 1 1 1 0:5 0:7 0:7 0:5 0:4 0:4

0:4 0:9 0:6 1 0:1 0:3 0:3 0:1 0:1 0:1

1 1 1 1 1 1 1 0:9 0:9 0:9

0:9 1 1 1 0:8 1 0:9 0:8 0:7 0:7

1 1 1 1 0:8 0:9 1 0:8 0:7 0:7

1 1 1 1 0:9 1 1 1 0:9 0:9

0:9 1 0:9 1 0:9 0:9 0:9 0:9 1 0:9

0:9 1 0:9 1 0:9 0:9 0:9 0:9 0:9 1

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

:

Therefore, one can obtain that

DATðu1Þ¼0:83; DATðu2Þ¼0:48; DATðu3Þ¼0:7; DATðu4Þ¼0:39;

DATðu5Þ¼0:97; DATðu6Þ¼0:88; DATðu7Þ¼0:89; DATðu8Þ¼0:97;

DATðu9Þ¼0:93; DATðu10Þ¼0:93:

We rank these five projects according to the number of

DATðuiÞ. A project with whole dominance degree implies

that it has higher investment venture.

u5 ¼ u8<ATu9 ¼ u10<ATu7<ATu6<ATu1<ATu3<ATu2<ATu4:

Thus, the investment profit of project u5 and u8 are highest

and that of project u4 is lowest. The decision maker should

select the project u5 and u8 to invest.

From Table 4, it is easy to see that

d ¼ f0:8; 0:4; 0:3; 0:5; 1:0; 0:7; 0:6; 0:9; 0:7; 0:5g.
From Definition 3.1, we have that

AT<

d ¼ f0:6; 0:3; 0:3; 0:3; 1:0; 0:7; 0:6; 0:9; 0:7; 0:5g;

AT<

d ¼ f1:0; 1:0; 1:0; 1:0; 1:0; 1:0; 1:0; 0:9; 0:7; 0:5g:

Take the threshold a ¼ 0:7, then we have

ðAT<

d Þ1 ¼ fu5; u6; u8; u9g;

ðAT<

d Þ1 ¼ fu1; u2; u3; u4; u5; u6; u7; u8; u9g:
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Therefore, we can obtain the following set of dominance

rules from the considered lattice-valued information sys-

tems with fuzzy decision:

1. Certain dominance rules with the following syntax:

r01 : ða1<4Þ ^ ða2<0:8Þ ^ ða3<½0:6; 0:7�Þ ^ ða4<f1;
2; 3; 4gÞ ^ ða5< (0.7, 0.1)) ! ðPf= High) // supported by

objects u5; u6; u8;

r02 : ða1<7Þ ^ ða2<0:9Þ ^ ða3<½0:7; 0:9�Þ ^ ða4<f2; 3;
4gÞ ^ ða5< (0.9, 0.0)) ! ðPf= High) // supported by u9.

2. Possible dominance rules with the following syntax:

r03 : ða1<3Þ ^ ða2<0:6Þ ^ ða3<½0:5; 0:8�Þ ^ ða4<f2;
3gÞ ^ ða5< (0.5, 0.4)) ! ðPf = High) // supported by u1;

r04 : ða1<2Þ ^ ða2<0:1Þ ^ ða3<½0:4; 0:5�Þ ^ ða4<;Þ ^
ða5< (0.2, 0.8)) ! ðPf = High) // supported by u2;

Table 4 An LvISFD about fund

investment
U Market Technology Management Environment Production Profit

u1 3 0.6 [0.5, 0.8] f2; 3g (0.5, 0.4) 0.8

u2 2 0.1 [0.4, 0.5] ; (0.2, 0.8) 0.4

u3 2 0.1 [0.4, 0.5] f2; 3g (0.2, 0.8) 0.3

u4 1 0.1 [0.1, 0.2] ; (0.2, 0.8) 0.5

u5 8 0.8 [0.8, 0.9] f1; 2; 3; 4g (0.7, 0.1) 1.0

u6 4 0.8 [0.6, 0.7] f1; 2; 3; 4g (0.7, 0.1) 0.7

u7 3 0.7 [0.5, 0.9] f2; 3g (0.6, 0.2) 0.6

u8 7 0.8 [0.7, 0.9] f1; 2; 3; 4; 5g (0.7, 0.1) 0.9

u9 7 0.9 [0.7, 0.9] f2; 3; 4g (0.9, 0.0) 0.7

u10 8 0.9 [0.8, 0.9] f2g (0.9, 0.0) 0.5

Table 5 Upper approximation discernibility matrix of Table 4

ui=uj u1 u2 u3 u4 u5 u6 u7 u8 u9 u10

u1 ; ; ; ; ; ; ; ; ; ;
u2 ; ; ; ; ; ; ; ; ; ;
u3 ; ; ; ; ; ; ; ; ; ;
u4 ; ; ; ; ; ; ; ; ; ;
u5 ; ; ; ; ; ; ; ; ; ;
u6 ; ; ; ; ; ; ; ; ; ;
u7 ; ; ; ; ; ; ; ; ; ;
u8 AT AT AT AT fa4g fa1a3a4g AT ; ; ;
u9 AT AT AT AT fa2a5g fa1a2a3a5g AT fa2a5g ; ;
u10 fa1a2a3a5g AT fa1a2a3a5g AT fa2g fa1a2a3a5g fa1a2a3a5g fa1a2a3a5g fa1a3g ;

Table 6 Lower approximation

discernibility matrix of Table 4
ui=uj u1 u2 u3 u4 u5 u6 u7 u8 u9 u10

u1 ; ; ; ; AT AT ; AT AT ;
u2 AT ; ; ; AT AT AT AT AT AT

u3 fa1a2a3a5g ; ; ; AT AT fa1a2a3a5g AT AT fa1a2a3a5g
u4 AT ; ; ; AT AT AT AT AT AT

u5 ; ; ; ; ; ; ; ; ; ;
u6 ; ; ; ; fa1a3} ; ; AT AT ;
u7 ; ; ; ; AT AT ; AT AT ;
u8 ; ; ; ; fa1a3g ; ; ; ; ;
u9 ; ; ; ; fa1a3a4g ; ; a4 ; ;
u10 fa4g ; ; ; ; fa4g fa4g fa4g fa4g ;
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r05 : ða1<2Þ ^ ða2<0:1Þ ^ ða3<½0:4; 0:5�Þ ^ ða4<f2;
3gÞ ^ ða5< (0.2, 0.8)) ! ðPf= High) // supported by u3;

r06 : ða1<1Þ ^ ða2<0:1Þ ^ ða3<½0:1; 0:2�Þ ^ ða4<;Þ ^
ða5< (0.2, 0.8)) ! ðPf = High) // supported by u4;

r07 : ða1<3Þ ^ ða2<0:7Þ ^ ða3<½0:5; 0:9�Þ ^ ða4<f2;
3gÞ ^ ða5< (0.6, 0.2)) ! ðPf= High) // supported by u7.

To extract much simpler dominance rules, we compute

the lower and upper approximation reductions of this

decision system. The lower and upper approximation

reductions of this decision system can be obtained by the

proposed approach in Sect. 5. Tables 5 and 6 are Upper and

lower approximation discernibility matrix of the system in

Table 4.

From Tables 5 and 6, one can caculate that

Fþ ¼ ða1 _ a2 _ a3 _ a4 _ a5Þ ^ ða1 _ a2 _ a3 _ a5Þ
^ ða1 _ a3 _ a4Þ ^ ða1 _ a3Þ

^ ða2 _ a5Þ ^ ða2Þ ^ ða4Þ
¼ ða1 _ a3Þ ^ ða2Þ ^ ða4Þ
¼ ða1 ^ a2 ^ a4Þ _ ða2 ^ a3 ^ a4Þ:

F� ¼ ða1 _ a2 _ a3 _ a4 _ a5Þ ^ ða1 _ a2 _ a3 _ a5Þ
^ ða1 _ a3 _ a4Þ ^ ða1 _ a3Þ ^ ða4Þ

¼ ða1 _ a3Þ ^ ða4Þ
¼ ða1 ^ a4Þ _ ða3 ^ a4Þ:

Hence, there are two lower approximation approximation

reductions in this information system about fund invest-

ment, which is fMarket, Environmentg and fManagement,

Environmentg. Lower approximation reduction is keeps

certain dominance rules invariant. Through a lower

approximation reduction, one can obtain more briefer

certain dominance rules. For example, by taking the lower

approximation reduction fMarket, Environmentg, the two

certain dominance rules in above part can be simply rep-

resented as follows.

3. Certain dominance rules with the following syntax:

r001 : ða1<4Þ ^ ða4<f1; 2; 3; 4gÞ ! ðPf= High) // sup-

ported by objects u5; u6; u8;

r002 : ða1<7Þ ^ ða4<f2; 3; 4gÞ ! ðPf= High) // sup-

ported by objects u9.

There are two upper approximation approximation

reductions in this information system about fund invest-

ment, which is fMarket, Technology, Environmentg and

fTechnology, Management, Environmentg. Upper

approximation reduction is keeps possible dominance rules

invariant. Through an upper approximation reduction, one

can obtain more briefer possible dominance rules. For

example, by taking the upper approximation reduction

fMarket, Technology, Environmentg, the five possible

dominance rules in above part can be simply represented as

follows.

4. possible dominance rules with the following syntax:

r003 : ða1<3Þ ^ ða2<0:6Þ ^ ða4<f2; 3gÞ ! ðPf = High)

// supported by objects u1;

r004 : ða1<2Þ ^ ða2<0:1Þ ^ ða4<;Þ ! ðPf = High) //

supported by objects u2;

r005 : ða1<2Þ ^ ða2<0:1Þ ^ ða4<f2; 3gÞ ! ðPf= High)

// supported by objects u3;

r006 : ða1<1Þ ^ ða2<0:1Þ ^ ða4<;Þ ! ðPf = High) //

supported by objects u4;

r007 : ða1<3Þ ^ ða2<0:7Þ ^ ða4<f2; 3gÞ ! ðPf = High)

// supported by objects u7.

Where r001 and r001 are two certain dominance rules and

r003 ; r
00
4 ; r

00
5 ; r

00
6 ; r

00
7 are possible dominance rules.

Table 7 The basic information datasets

Dataset Objects Attributes Decision classes

1 Energy efficiency 768 8 3

2 Airfoil self-noise 1503 6 5

3 Wine quality-red 1599 11 6

4 Wine quality-

white

4898 11 7
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In the following, we will test approaches to attribute

reductions in an LvISFD on some real-life datasets. Data-

sets used in the experiments are underlined in Table 7,

which are downloaded from University of California -

Irvine (UCI) Repository of Machine Learning datasets. In

these UCI datasets, most of the initial data are single-val-

ued. what means one has to construct the lattice-valued

datasets with fuzzy decision. When a dataset is selected

from the UCI, we need to preprocess these data on the

selected datasets. The means of preprocess to obtain the

target data are shown as follows:

1. The real elements: Do not need preprocess.

2. The fuzzy elements: jAðxiÞ � EðAÞj=jmðAÞ � nðAÞj:
Where AðxiÞ denotes the value of xi with respect to

condition attribute A. E(A), m(A) and n(A) denote the

average value of A, the maximum value of A and the

minimum value of A, respectively.

3. The interval-valued elements: ½AðxiÞ � ð1�
aÞ;AðxiÞ � ð1þ aÞ�: Where AðxiÞ denotes the value

of xi with respect to condition attribute A, and a
denotes an any number in the interval [0, 1].

4. The set-valued elements:

AðxiÞ � b; b ¼ ðb1; b2; b3; b4; b5Þ, and

bi 2 ½0:1; 1�:
5. The classical intuitionistic fuzzy set elements:

ðsin2ðAðxiÞÞ; cos2ðAðxiÞÞ � cÞ, c 2 ½0; 0:05�.

This experimental computing program is running on a

personal computer with the following hardware and soft-

ware configuration.

Names Model Parameters

CPU Intel Core i3-2350M 2.3GHz

Memory Samsung DDR3 SDRAM 2�2GB 1333MHz

Hard disk West Data 500GB

System Windows 7 32bit

Platform C?? Leasehold

By using of Algorithm 1 and proposed methods for

attribute reductions in an LvISFD, we can get the results of

experiments. The number of lower/upper approximation

reductions are shown in Table 8.

7 Conclusions

Rough set theory is a new mathematical tool to deal with

vagueness and uncertainty. Development of a rough com-

putational method is one of the most important research

tasks. However, an LvISFD confines the applications of

classical rough set theory. In this article, we mainly con-

sidered some important concepts and properties in this

system. We defined two approximation operators and

established the rough set approach to an LvISFD. For

dominance rules acquisition, we have discussed dominance

rules acquisition in this kind of decision information sys-

tem. In order to extract much simpler dominance rules,

based on the discernibility matrices, we have proposed

approximation reductions of an LvISFD, and presented

method of the corresponding reduction respectively. The

approaches show how to find much simpler dominance

rules directly from an LvISFD. In order to hillustrate our

methods of attribute reduction, we constructed an artificial

example about the fund investment, and tested the reduc-

tion algorithm in the UCI datasets.
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